48 research outputs found

    Low prevalence, quasi-stationarity and power-law distribution in a model of spreading

    Full text link
    Understanding how contagions (information, infections, etc) are spread on complex networks is important both from practical as well as theoretical point of view. Considerable work has been done in this regard in the past decade or so. However, most models are limited in their scope and as a result only capture general features of spreading phenomena. Here, we propose and study a model of spreading which takes into account the strength or quality of contagions as well as the local (probabilistic) dynamics occurring at various nodes. Transmission occurs only after the quality-based fitness of the contagion has been evaluated by the local agent. The model exhibits quality-dependent exponential time scales at early times leading to a slowly evolving quasi-stationary state. Low prevalence is seen for a wide range of contagion quality for arbitrary large networks. We also investigate the activity of nodes and find a power-law distribution with a robust exponent independent of network topology. Our results are consistent with recent empirical observations.Comment: 7 pages, 8 figures. (Submitted

    Time parameterization and stationary distributions in a relativistic gas

    Full text link
    In this paper we consider the effect of different time parameterizations on the stationary velocity distribution function for a relativistic gas. We clarify the distinction between two such distributions, namely the J\"{u}ttner and the modified J\"{u}ttner distributions. Using a recently proposed model of a relativistic gas, we show that the obtained results for the proper-time averaging does not lead to modified J\"{u}ttner distribution (as recently conjectured), but introduces only a Lorentz factor γ\gamma to the well-known J\"{u}ttner function which results from observer-time averaging. We obtain results for rest frame as well as moving frame in order to support our claim.Comment: 5 pages, 2 figure

    Multi-partite entanglement and quantum phase transition in the one-, two-, and three-dimensional transverse field Ising model

    Full text link
    In this paper we consider the quantum phase transition in the Ising model in the presence of a transverse field in one, two and three dimensions from a multi-partite entanglement point of view. Using \emph{exact} numerical solutions, we are able to study such systems up to 25 qubits. The Meyer-Wallach measure of global entanglement is used to study the critical behavior of this model. The transition we consider is between a symmetric GHZ-like state to a paramagnetic product-state. We find that global entanglement serves as a good indicator of quantum phase transition with interesting scaling behavior. We use finite-size scaling to extract the critical point as well as some critical exponents for the one and two dimensional models. Our results indicate that such multi-partite measure of global entanglement shows universal features regardless of dimension dd. Our results also provides evidence that multi-partite entanglement is better suited for the study of quantum phase transitions than the much studied bi-partite measures.Comment: 7 pages, 8 Figures. To appear in Physical Review

    Fine Structure of Avalanches in the Abelian Sandpile Model

    Full text link
    We study the two-dimensional Abelian Sandpile Model on a square lattice of linear size L. We introduce the notion of avalanche's fine structure and compare the behavior of avalanches and waves of toppling. We show that according to the degree of complexity in the fine structure of avalanches, which is a direct consequence of the intricate superposition of the boundaries of successive waves, avalanches fall into two different categories. We propose scaling ans\"{a}tz for these avalanche types and verify them numerically. We find that while the first type of avalanches has a simple scaling behavior, the second (complex) type is characterized by an avalanche-size dependent scaling exponent. This provides a framework within which one can understand the failure of a consistent scaling behavior in this model.Comment: 10 page

    Driven depinning of strongly disordered media and anisotropic mean-field limits

    Get PDF
    Extended systems driven through strong disorder are modeled generically using coarse-grained degrees of freedom that interact elastically in the directions parallel to the driving force and that slip along at least one of the directions transverse to the motion. A realization of such a model is a collection of elastic channels with transverse viscous couplings. In the infinite range limit this model has a tricritical point separating a region where the depinning is continuous, in the universality class of elastic depinning, from a region where depinning is hysteretic. Many of the collective transport models discussed in the literature are special cases of the generic model.Comment: 4 pages, 2 figure

    Sandpiles with height restrictions

    Full text link
    We study stochastic sandpile models with a height restriction in one and two dimensions. A site can topple if it has a height of two, as in Manna's model, but, in contrast to previously studied sandpiles, here the height (or number of particles per site), cannot exceed two. This yields a considerable simplification over the unrestricted case, in which the number of states per site is unbounded. Two toppling rules are considered: in one, the particles are redistributed independently, while the other involves some cooperativity. We study the fixed-energy system (no input or loss of particles) using cluster approximations and extensive simulations, and find that it exhibits a continuous phase transition to an absorbing state at a critical value zeta_c of the particle density. The critical exponents agree with those of the unrestricted Manna sandpile.Comment: 10 pages, 14 figure

    Fluctuations and correlations in sandpile models

    Get PDF
    We perform numerical simulations of the sandpile model for non-vanishing driving fields hh and dissipation rates ϵ\epsilon. Unlike simulations performed in the slow driving limit, the unique time scale present in our system allows us to measure unambiguously response and correlation functions. We discuss the dynamic scaling of the model and show that fluctuation-dissipation relations are not obeyed in this system.Comment: 5 pages, latex, 4 postscript figure

    N-Site approximations and CAM analysis for a stochastic sandpile

    Full text link
    I develop n-site cluster approximations for a stochastic sandpile in one dimension. A height restriction is imposed to limit the number of states: each site can harbor at most two particles (height z_i \leq 2). (This yields a considerable simplification over the unrestricted case, in which the number of states per site is unbounded.) On the basis of results for n \leq 11 sites, I estimate the critical particle density as zeta_c = 0.930(1), in good agreement with simulations. A coherent anomaly analysis yields estimates for the order parameter exponent [beta = 0.41(1)] and the relaxation time exponent (nu_|| \simeq 2.5).Comment: 12 pages, 7 figure
    corecore